A Combinatorial Proof of a Result on Generalized Lucas Polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

On convolved generalized Fibonacci and Lucas polynomials

We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...

متن کامل

A SHORT PROOF OF A RESULT OF NAGEL

Let $(R,fm)$ be a Gorenstein local ring and$M,N$ be two finitely generated modules over $R$. Nagel proved that if $M$ and $N$ are inthe same even liaison class, thenone has $H^i_{fm}(M)cong H^i_{fm}(N)$ for all $iIn this paper, we provide a short proof to this result.

متن کامل

A Combinatorial Proof of a Result from Number Theory

Let rk(n) denote the number of representations of n as a sum of k squares and tk(n) the number of representations of n as a sum of k triangular numbers. We give an elementary, combinatorial proof of the relations rk(8n+ k) = cktk(n), 1 ≤ k ≤ 7, where c1 = 2, c2 = 4, c3 = 8, c4 = 24, c5 = 112, c6 = 544 and c7 = 2368.

متن کامل

A Direct Combinatorial Proof of a Positivity Result

"A simple result deserves a simple proof" I Objects lying in four different boxes are rearranged in such a way that the number of objects where the bottom is a rearrangement of the top. The weight W (T) of the multiset permutation T is defined to be (-I) ~-where U, is the number of columns of the form I: 111122333444 , x # y. For example, if n-= 441223133411 then U, = 7 and w (n-) = (-~) ~ =-1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2016

ISSN: 2391-4661,0420-1213

DOI: 10.1515/dema-2016-0022